organic compounds

 $\mu = 0.09 \text{ mm}^{-1}$ T = 273 (2) K

 $R_{\rm int} = 0.030$

 $0.35 \times 0.23 \times 0.18 \text{ mm}$

11748 measured reflections

1913 independent reflections 1512 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Hydroxy-5-methylphenyl)(phenyl)methanone

Jian-Guo Chang,^a* Lin-Lin Qiu,^b Dong-Feng Zhao^c and Guo-Fang He^a

^aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, ^bAdministrative Department of State-Owned Assets, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^cDepartment of Chemical Engineering, Weifang Vocational College, 261041 Weifang, Shandong, People's Republic of China Correspondence e-mail: sucjg@163.com

Received 1 July 2007; accepted 12 July 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.149; data-to-parameter ratio = 12.9.

In the title compound, $C_{14}H_{12}O_2$, the dihedral angle between the two aromatic rings is 60.02 (4)°. The crystal structure is stabilized by intramolecular $O-H\cdots O$ and intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Khanum et al. (2004).

Experimental

Crystal data	
$C_{14}H_{12}O_2$	a = 15.9176 (7) Å
$M_r = 212.24$	b = 5.8509 (2) Å
Monoclinic, $P2_1/c$	c = 12.1429 (5) Å

$\beta = 105.745 \ (2)^{\circ}$
V = 1088.46 (8) Å ³
Z = 4
Mo Ka radiation

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\rm min} = 0.971, T_{\rm max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 148 parameters $wR(F^2) = 0.149$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.17$ e Å $^{-3}$ 1913 reflections $\Delta \rho_{min} = -0.12$ e Å $^{-3}$

Table 1			
Hydrogen-bond g	geometry	(Å, '	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} D1 - H1 \cdots O2 \\ C13 - H13 \cdots O2^{i} \\ C5 - H5 \cdots O1^{ii} \end{array}$	0.82	1.85	2.571 (1)	146
	0.93	2.72	3.532 (2)	147
	0.93	2.56	3.449 (2)	159

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y05–2–09)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2217).

References

- Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Khanum, S. A., Venu, T. D., Shashikanth, S. & Firdouse, A. (2004). Bioorg. Med. Chem. Lett. 12, 2093–2095.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o3517 [doi:10.1107/S1600536807034095]

(2-Hydroxy-5-methylphenyl)(phenyl)methanone

J.-G. Chang, L.-L. Qiu, D.-F. Zhao and G.-F. He

Comment

Benzophenones and related compounds have a wide variety of applications, in particular as biologically active compounds, which exhibit anti-inflammatory (Khanum *et al.*, 2004), antifungal, antibacterial and anticancer activities As an extension of work on the structural characterization of Benzophenone derivatives, the title compound, (I), was synthesized and its crystal structure is reported here.

The molecule of (I) is non-planar (Fig. 1).the dihedral angle between the two aromatic rings is $60.02 (4)^{\circ}$. The crystal structure is stabilized by intramolecular O—H···O and intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

Benzoyl chloride (7.02 g, 0.05 mol) was added dropwise to *p*-cresol (5.41 g,0.05 mol) and the mixture was reacted at room temperature for 1 h, then heated to 373 K for 2 h. After cooled to the ambient temperature, the chloroform diluted mixture was washed with sodium carbonate solution and water for several times. The organic layer was dried with anhydrous sodium sulfate, filtered, and the solvent was removed. Further purification was carried out by vacuum distillation, 4-methylphenyl benzoate was obtained (yield 85.3%). Then the mixture of 4-methylphenyl benzoate (9.05 g, 0.043 mol) and anhydrous aluminium chloride (17.20 g, 0.129 mol) gradually heated to 373 K in 0.5 h, then heated to 423 K and kept for 0.5 h. The reaction mixture was cooled to room temperature, hydrolyzed, and extracted with 60 ml chloroform. The organic layer washed with water, dried with anhydrous sodium sulfate. Filtered, chloroform was removed under reduced pressure. The residue was distilled under vacuum to obtain the title compound (yield 78.0%) The compound was recrystallized from ethyl acetate to obtain colourless single crystals suitable for *x*-ray diffraction.

Refinement

All H atoms, were positioned geometrically and treated as riding on their parent atoms, with C - H(methyl) = 0.96 Å, C - H(aromatic) = 0.93 Å, O - H = 0.82 Å, and with $U_{iso}(H) = 1.5U_{eq}(C_{methyl}, O)$ and $1.2U_{eq}(C_{aromatic})$.

Figures

Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Partial packing view of (I) showing intramolecular O—H···O and intermolecular C—H···O hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) (i) x, 3/2 - y, 1/2 + z; (ii) x, 1/2 - y, 1/2 + z].

(2-hydroxy-5-methylphenyl)(phenyl)methanone

Crystal data	
$C_{14}H_{12}O_2$	$F_{000} = 448$
$M_r = 212.24$	$D_{\rm x} = 1.295 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2709 reflections
<i>a</i> = 15.9176 (7) Å	$\theta = 2.7 - 24.2^{\circ}$
b = 5.8509 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.1429 (5) Å	T = 273 (2) K
$\beta = 105.745 \ (2)^{\circ}$	Plate, colourless
$V = 1088.46 (8) \text{ Å}^3$	$0.35\times0.23\times0.18\ mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	1913 independent reflections
Radiation source: fine-focus sealed tube	1512 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 273(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -18 \rightarrow 18$
$T_{\min} = 0.971, \ T_{\max} = 0.990$	$k = -6 \rightarrow 6$
11748 measured reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.13P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.149$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.00	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
1913 reflections	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$
148 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997a), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (5) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.71300 (9)	0.5107 (2)	-0.19822 (10)	0.0694 (5)
H1	0.7462	0.5893	-0.1494	0.104*
O2	0.80872 (9)	0.6108 (2)	0.00287 (11)	0.0677 (4)
C1	0.68806 (10)	0.3263 (3)	-0.14813 (14)	0.0523 (5)
C2	0.62578 (11)	0.1827 (4)	-0.21475 (15)	0.0643 (6)
H2	0.6047	0.2102	-0.2928	0.077*
C3	0.59494 (11)	0.0008 (4)	-0.16702 (17)	0.0658 (6)
H3	0.5532	-0.0938	-0.2137	0.079*
C4	0.62445 (10)	-0.0476 (3)	-0.04969 (15)	0.0536 (5)
C5	0.68934 (9)	0.0906 (3)	0.01512 (14)	0.0467 (4)
Н5	0.7114	0.0591	0.0927	0.056*
C6	0.72332 (9)	0.2763 (3)	-0.03130 (13)	0.0445 (4)
C7	0.58701 (12)	-0.2407 (3)	0.00307 (18)	0.0705 (6)
H7A	0.6231	-0.2681	0.0792	0.106*
H7B	0.5848	-0.3761	-0.0423	0.106*
H7C	0.5291	-0.2016	0.0061	0.106*
C8	0.79057 (10)	0.4252 (3)	0.03944 (14)	0.0470 (4)
С9	0.83898 (9)	0.3586 (3)	0.15822 (13)	0.0426 (4)
C10	0.88182 (10)	0.1502 (3)	0.18194 (14)	0.0491 (4)
H10	0.8770	0.0428	0.1241	0.059*
C11	0.93172 (10)	0.1030 (3)	0.29179 (15)	0.0559 (5)
H11	0.9622	-0.0342	0.3074	0.067*
C12	0.93630 (11)	0.2590 (3)	0.37798 (15)	0.0606 (5)
H12	0.9692	0.2256	0.4520	0.073*
C13	0.89262 (12)	0.4636 (3)	0.35563 (15)	0.0602 (5)
H13	0.8950	0.5670	0.4146	0.072*
C14	0.84537 (10)	0.5149 (3)	0.24589 (14)	0.0514 (5)
H14	0.8175	0.6556	0.2303	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0801 (10)	0.0787 (10)	0.0484 (8)	0.0025 (7)	0.0159 (7)	0.0140 (7)
02	0.0851 (9)	0.0528 (8)	0.0613 (9)	-0.0093 (6)	0.0130 (7)	0.0095 (6)
C1	0.0494 (9)	0.0640 (11)	0.0445 (10)	0.0117 (8)	0.0145 (7)	0.0014 (8)
C2	0.0523 (10)	0.0922 (15)	0.0435 (10)	0.0054 (10)	0.0049 (8)	-0.0046 (10)
C3	0.0473 (10)	0.0842 (14)	0.0597 (12)	-0.0042 (9)	0.0040 (8)	-0.0197 (10)
C4	0.0413 (8)	0.0578 (11)	0.0603 (11)	0.0026 (7)	0.0116 (8)	-0.0086 (8)
C5	0.0436 (8)	0.0504 (9)	0.0446 (9)	0.0073 (7)	0.0093 (7)	-0.0023 (7)
C6	0.0445 (8)	0.0493 (9)	0.0393 (9)	0.0080 (7)	0.0107 (7)	-0.0021 (7)
C7	0.0557 (10)	0.0633 (12)	0.0907 (15)	-0.0065 (9)	0.0167 (10)	-0.0058 (11)
C8	0.0510 (9)	0.0431 (9)	0.0477 (10)	0.0032 (7)	0.0148 (7)	0.0006 (7)
C9	0.0405 (8)	0.0420 (9)	0.0447 (9)	-0.0042 (6)	0.0108 (6)	-0.0030(7)
C10	0.0493 (9)	0.0457 (9)	0.0515 (10)	-0.0018 (7)	0.0127 (7)	-0.0053 (7)
C11	0.0481 (9)	0.0537 (10)	0.0611 (11)	-0.0014 (7)	0.0066 (8)	0.0059 (9)
C12	0.0559 (10)	0.0701 (13)	0.0480 (10)	-0.0139 (9)	0.0006 (8)	0.0047 (9)
C13	0.0688 (11)	0.0623 (12)	0.0483 (11)	-0.0145 (9)	0.0139 (9)	-0.0133 (9)
C14	0.0556 (10)	0.0446 (9)	0.0541 (11)	-0.0038 (7)	0.0150 (8)	-0.0071 (8)

Geometric parameters (Å, °)

		0.9000
0.8200	С7—Н7С	0.9600
1.237 (2)	C8—C9	1.491 (2)
1.381 (2)	C9—C14	1.386 (2)
1.407 (2)	C9—C10	1.388 (2)
1.366 (3)	C10-C11	1.383 (2)
0.9300	C10—H10	0.9300
1.403 (3)	C11—C12	1.376 (3)
0.9300	C11—H11	0.9300
1.378 (2)	C12—C13	1.374 (3)
1.500 (2)	C12—H12	0.9300
1.399 (2)	C13—C14	1.374 (2)
0.9300	С13—Н13	0.9300
1.464 (2)	C14—H14	0.9300
0.9600		
109.5	Н7А—С7—Н7С	109.5
118.30 (16)	H7B—C7—H7C	109.5
122.32 (15)	O2—C8—C6	121.11 (15)
119.37 (17)	O2—C8—C9	117.85 (14)
120.60 (17)	C6—C8—C9	121.04 (14)
119.7	C14—C9—C10	119.37 (15)
119.7	C14—C9—C8	118.79 (14)
121.92 (17)	С10—С9—С8	121.74 (14)
119.0	C11—C10—C9	119.80 (16)
119.0	C11-C10-H10	120.1
	0.8200 1.237 (2) 1.381 (2) 1.407 (2) 1.366 (3) 0.9300 1.403 (3) 0.9300 1.378 (2) 1.500 (2) 1.399 (2) 0.9300 1.464 (2) 0.9600 109.5 118.30 (16) 122.32 (15) 119.37 (17) 120.60 (17) 119.7 121.92 (17) 119.0 119.0	0.8200 $C7-H7C$ $1.237 (2)$ $C8-C9$ $1.381 (2)$ $C9-C14$ $1.407 (2)$ $C9-C10$ $1.366 (3)$ $C10-C11$ 0.9300 $C10-H10$ $1.403 (3)$ $C11-C12$ 0.9300 $C11-H11$ $1.378 (2)$ $C12-C13$ $1.500 (2)$ $C12-H12$ $1.399 (2)$ $C13-C14$ 0.9300 $C13-H13$ $1.464 (2)$ $C14-H14$ 0.9600 109.5 109.5 $H7A-C7-H7C$ $118.30 (16)$ $H7B-C7-H7C$ $118.30 (16)$ $H7B-C7-H7C$ $119.37 (17)$ $O2-C8-C9$ $120.60 (17)$ $C6-C8-C9$ 119.7 $C14-C9-C10$ 119.7 $C14-C9-C8$ $121.92 (17)$ $C10-C9-C8$ 119.0 $C11-C10-C9$ 119.0 $C11-C10-H10$

C5—C4—C3	117.01 (17)	С9—С10—Н10	120.1
C5—C4—C7	121.41 (17)	C12-C11-C10	119.95 (17)
C3—C4—C7	121.57 (17)	C12—C11—H11	120.0
C4—C5—C6	122.52 (16)	C10-C11-H11	120.0
С4—С5—Н5	118.7	C13—C12—C11	120.56 (17)
С6—С5—Н5	118.7	C13—C12—H12	119.7
C5—C6—C1	118.40 (15)	C11—C12—H12	119.7
C5—C6—C8	121.80 (14)	C14—C13—C12	119.76 (17)
C1—C6—C8	119.72 (15)	C14—C13—H13	120.1
С4—С7—Н7А	109.5	С12—С13—Н13	120.1
С4—С7—Н7В	109.5	C13—C14—C9	120.51 (16)
H7A—C7—H7B	109.5	C13—C14—H14	119.7
С4—С7—Н7С	109.5	C9—C14—H14	119.7
O1—C1—C2—C3	-176.52 (16)	C5—C6—C8—C9	12.9 (2)
C6—C1—C2—C3	3.6 (3)	C1—C6—C8—C9	-170.48 (13)
C1—C2—C3—C4	0.2 (3)	O2—C8—C9—C14	49.4 (2)
C2—C3—C4—C5	-3.0 (3)	C6—C8—C9—C14	-130.18 (16)
C2—C3—C4—C7	176.88 (16)	O2—C8—C9—C10	-126.78 (17)
C3—C4—C5—C6	2.0 (2)	C6—C8—C9—C10	53.6 (2)
C7—C4—C5—C6	-177.84 (15)	C14—C9—C10—C11	-1.4 (2)
C4—C5—C6—C1	1.6 (2)	C8—C9—C10—C11	174.81 (14)
C4—C5—C6—C8	178.26 (14)	C9-C10-C11-C12	2.3 (2)
O1—C1—C6—C5	175.68 (14)	C10-C11-C12-C13	-0.9 (3)
C2—C1—C6—C5	-4.4 (2)	C11-C12-C13-C14	-1.3 (3)
O1—C1—C6—C8	-1.1 (2)	C12—C13—C14—C9	2.2 (3)
C2—C1—C6—C8	178.85 (15)	C10-C9-C14-C13	-0.9 (2)
C5—C6—C8—O2	-166.70 (15)	C8—C9—C14—C13	-177.17 (15)
C1—C6—C8—O2	9.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O1—H1…O2	0.82	1.85	2.571 (1)	146
C13—H13···O2 ⁱ	0.93	2.72	3.532 (2)	147
C5—H5…O1 ⁱⁱ	0.93	2.56	3.449 (2)	159
Symmetry codes: (i) x , $-y+3/2$, $z+1/2$; (ii) x , $-y+1/2$, $z+1/2$.				

